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Transport processes

• For modeling purposes, validate that 
DSM2 transports salt etc. for the right 
reason…

• Reasons: Advection and dispersion



Advective Transport

• Correlation between net flow and net 
scalar concentration

• Mostly from river input and spring-neap 
estuary fill-drain cycle

• Advective Flux = <Qt><Ct>



Dispersive Transport

• Correlation between tidal flow and tidal 
scalar concentration

• Driven by tide
• Dispersive Flux = <Q’t*C’t>



Total Flux

• Superposition of advective and dispersive 
flux.

• Total Flux =   advection + disperion
<Qt*Ct>   =  <Qt><Ct> + <Q’t*C’t>

• Compute with model output and field data 
and compare.
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•• Similar tidal prismSimilar tidal prism
•• Similar source waterSimilar source water
•• Different adjacent land useDifferent adjacent land use
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Data is flow, temperature, chlorophyll,Data is flow, temperature, chlorophyll,
salt and DO flux at these locations:salt and DO flux at these locations:



Comparing Hydrodynamics
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